МенюКонтакты
Обучение
Москва

+7 (495) 913-75-75 доб.221

+7 (495) 668-08-42

Санкт-Петербург

+7 (812) 441-33-15

+7 (901) 374-07-97

Почта

edu@fors.ru

Oracle Database 11g: Data Warehousing Fundamentals

Посмотреть расписание этого курса

  • Код курса: 11gDWF
  • Длительность: 3 д.
  • Цена: 75 225 р.
Записаться

Описание курса

Аннотация:

В данном курсе слушатели изучат основные концепции организации информационных хранилищ, вопросы, посвященные планированию, проектированию, построению, заполнению и администрированию хранилища данных. Будут рассмотрены возможности увеличения производительности и управляемости путем использования различных функциональностей баз данных Oracle.
Также слушатели узнают об основах и преимуществах секционированной архитектруры баз даных Oracle. Будут рассмотрены преимущества параллельных операций, что снижает время ответа в случае информационно ёмких операций. Слушатели изучат стадии извлечения, преобразования и загрузки данных (ETL) в хранилищах данных Oracle (Oracle database warehouse). А также основные преимущества использования материализованных представлений Oracle, позволяющие повысить производительность хранилищ данных. Слушатели получат представление о том, как перезапись запроса помогает наладить его исполнение. Будет проведен обзор OLAP и Data Mining и обсуждение некоторых внедрений информационных хранилищ.
Слушатели кратко ознакомятся с функциональностью таких доступных инструментов для организации хранилищ данных, как Oracle Warehouse Builder, Analytic Workspace Manager и Oracle Application Express.

Слушатели получают следующие знания:

  • Знакомство с терминологией и основными концепциями организации информационных хранилищ
  • Навыки использования технологий и некоторых инструментов, разработанных компанией Oracle для успешной организации хранилища данных
  • Характеристика некоторых методов и инструментов для извлечения, преобразования и загрузки данных
  • Определение некоторых инструментальных средств для получения и анализа данных из хранилища
  • Описание преимуществ секционирования, параллельных операций, материализованных представлений и перезаписи запросов
  • Обсуждение проблем внедерния и организационных вопросов, возникающих в проектах по организации информационных хранилищ
  • Использование материализованных представлений и перезаписи запросов для увеличения производительности хранилдища данных
  • Навыки работы с технологиями, необходимыми для реализации хранилища данных

Аудитория:

  • Разработчики приложений
  • Администраторы хранилищ данных
  • Аналитики хранилищ данных
  • Разработчики хранилищ данных
  • Менеджеры проектов
  • Инженеры служб технической поддержки

Требования к подготовке слушателей:

  • Знания основных концепций организации информационных хранилищ, технологий архитектуры клиент-сервер, технологий реляционых серверов.

Описание курса (course topics):

Introduction

  • Course Objectives
  • Course Schedule
  • Course Pre-requisites and Suggested Pre-requisites
  • The sh and dm Sample Schemas and Appendices Used in the Course
  • Class Account Information
  • SQL Environments and Data Warehousing Tools Used in this Course
  • Oracle 11g Data Warehousing and SQL Documentation and Oracle By Examples
  • Continuing Your Education: Recommended Follow-Up Classes

Data Warehousing, Business Intelligence, OLAP, and Data Mining

  • Data Warehouse Definition and Properties
  • Data Warehouses, Business Intelligence, Data Marts, and OLTP
  • Typical Data Warehouse Components
  • Warehouse Development Approaches
  • Extraction, Transformation, and Loading (ETL)
  • The Dimensional Model and Oracle OLAP
  • Oracle Data Mining

Defining Data Warehouse Concepts and Terminology

  • Data Warehouse Definition and Properties
  • Data Warehouse Versus OLTP
  • Data Warehouses Versus Data Marts
  • Typical Data Warehouse Components
  • Warehouse Development Approaches
  • Data Warehousing Process Components
  • Strategy Phase Deliverables
  • Introducing the Case Study: Roy Independent School District (RISD)

Business, Logical, Dimensional, and Physical Modeling

  • Data Warehouse Modeling Issues
  • Defining the Business Model
  • Defining the Logical Model
  • Defining the Dimensional Model
  • Defining the Physical Model: Star, Snowflake, and Third Normal Form
  • Fact and Dimension Tables Characteristics
  • Translating Business Dimensions into Dimension Tables
  • Translating Dimensional Model to Physical Model

Database Sizing, Storage, Performance, and Security Considerations

  • Database Sizing and Estimating and Validating the Database Size
  • Oracle Database Architectural Advantages
  • Data Partitioning
  • Indexing
  • Optimizing Star Queries: Tuning Star Queries
  • Parallelism
  • Security in Data Warehouses
  • Oracle's Strategy for Data Warehouse Security

The ETL Process: Extracting Data

  • Extraction, Transformation, and Loading (ETL) Process
  • ETL: Tasks, Importance, and Cost
  • Extracting Data and Examining Data Sources
  • Mapping Data
  • Logical and Physical Extraction Methods
  • Extraction Techniques and Maintaining Extraction Metadata
  • Possible ETL Failures and Maintaining ETL Quality
  • Oracle's ETL Tools: Oracle Warehouse Builder, SQL*Loader, and Data Pump

The ETL Process: Transforming Data

  • Transformation
  • Remote and Onsite Staging Models
  • Data Anomalies
  • Transformation Routines
  • Transforming Data: Problems and Solutions
  • Quality Data: Importance and Benefits
  • Transformation Techniques and Tools
  • Maintaining Transformation Metadata

The ETL Process: Loading Data

  • Loading Data into the Warehouse
  • Transportation Using Flat Files, Distributed Systems, and Transportable Tablespaces
  • Data Refresh Models: Extract Processing Environment
  • Building the Loading Process
  • Data Granularity
  • Loading Techniques Provided by Oracle
  • Postprocessing of Loaded Data
  • Indexing and Sorting Data and Verifying Data Integrity

Refreshing the Warehouse Data

  • Developing a Refresh Strategy for Capturing Changed Data
  • User Requirements and Assistance
  • Load Window Requirements
  • Planning and Scheduling the Load Window
  • Capturing Changed Data for Refresh
  • Time- and Date-Stamping, Database triggers, and Database Logs
  • Applying the Changes to Data
  • Final Tasks

Materialized Views

  • Using Summaries to Improve Performance
  • Using Materialized Views for Summary Management
  • Types of Materialized Views
  • Build Modes and Refresh Modes
  • Query Rewrite: Overview
  • Cost-Based Query Rewrite Process
  • Working With Dimensions and Hierarchies

Leaving a Metadata Trail

  • Defining Warehouse Metadata
  • Metadata Users and Types
  • Examining Metadata: ETL Metadata
  • Extraction, Transformation, and Loading Metadata
  • Defining Metadata Goals and Intended Usage
  • Identifying Target Metadata Users and Choosing Metadata Tools and Techniques
  • Integrating Multiple Sets of Metadata
  • Managing Changes to Metadata

Data Warehouse Implementation Considerations

  • Project Management
  • Requirements Specification or Definition
  • Logical, Dimensional, and Physical Data Models
  • Data Warehouse Architecture
  • ETL, Reporting, and Security Considerations
  • Metadata Management
  • Testing the Implementation and Post Implementation Change Management
  • Some Useful Resources and White Papers

Содержание курса

 

Записаться на курс: Oracle Database 11g: Data Warehousing Fundamentals

Начало курса: 13.11.17


Поделиться
Отправьте другу или начальнику ссылку на почту
Заявка на обучение

Заявка на обучение

Записаться на курс:

Выберите дату начала курса: